Monte Carlo method
蒙特卡洛方法,也叫蒙特卡洛分析,是一种使用随机抽样统计来估算数学函数的计算方法。它需要一个良好的随机数源。这种方法往往包含一些误差,但是随着随机抽取样本数量的增加,结果也会越来越精确。
蒙特卡洛方法在纯数学方面一般用来求解一个函数的定积分。它的计算过程如下:先在一个区间或区域内随机抽取一定数量的独立变量样本,然后求相应的独立因变量的平均值,最后用随机样本所在区间(或区域)的长度(或大小)除以所求出的平均值。它与传统的估算定积分的方法有很大差别,传统方法在区间或区域内抽取样本点时是间隔相等、均匀抽取的。蒙特卡洛方法以其在第二次世界大战时被用于原子弹的设计而闻名于世。现在它也已经被应用于多种领域,如超高速公路的运输流量分析、行星演变模型的建立以及股票市场波动的预测。这种方法同样也可应用于集成电路设计、量子力学和通信工程。
在项目管理应用上:蒙特卡洛分析是一种模拟技术
主要在制定进度和风险管理中用到
模拟指以不同的活动假设为前提,计算多种项目所需时间。最常用的技术是蒙特卡洛分析,该种分析对每项活动都定义一个结果概率分布,以此为基础计算整个项目的结果概率分布。此外,还可以用逻辑网络进行“如果…怎么办”分析,以模拟各种不同的情况组合,例如推迟某重要配件的交付、延迟具体工程所需时间、或者把外部因素(例如罢工、或政府批准过程发生变化)考虑进来。“如果…怎么办”分析的结果可用于评估进度在恶劣条件下的可行性,并可用于制订应急/应对计划,克服或减轻意外情况所造成的影响。
此外,蒙特卡洛分析还可用于风险定量分析